Gadget

DALL·E: Creating Images from Text

The current advancement in neural networks lets to perform text generation or image generation tasks. Researchers have recently extended such abilities and introduced a neural network DALL·E that can convert text descriptions to images.

The system can use the compositional structure of language to generate plausible images for lots of sentences. For instance, it lets to render the image from the desired viewpoint or according to the chosen 3D style (as visualize a turtle made of wireframe). It is possible to depict the internal and external structure by cross-sectional views or macro photographs.

Furthermore, DALL·E can combine unrelated concepts to

Read More

Protecting lungs from ventilator-induced injury

An unfortunate truth about the use of mechanical ventilation to save the lives of patients in respiratory distress is that the pressure used to inflate the lungs is likely to cause further lung damage.

In a new study, scientists identified a molecule that is produced by immune cells during mechanical ventilation to try to decrease inflammation but isn’t able to completely prevent ventilator-induced injury to the lungs.

The team is working on exploiting that natural process in pursuit of a therapy that could lower the chances for lung damage in patients on ventilators. Delivering high levels of the helpful molecule

Read More

Nanomaterials for the Clearance of Senescent Cells

Senescent cell accumulation is a contributing cause of aging, and targeted destruction of senescent cells with senolytic therapies produces meaningful rejuvenation and reversal of age-related disease in animal models. First generation senolytics are largely repurposed small molecules. Second generation senolytics will include a range of more carefully designed strategies, including the nanoparticles allowing for selective delivery of therapeutics to senescent cells that are the topic of this open access paper. Such nanoparticles can be used as the basis for both detection of senescent cells and their destruction, a promising attribute in the present environment in which there is

Read More

New nanostructured alloy for anode is a big step toward revolutionizing energy storage

Researchers in the Oregon State University College of Engineering have developed a battery anode based on a new nanostructured alloy that could revolutionize the way energy storage devices are designed and manufactured.

The zinc- and manganese-based alloy further opens the door to replacing solvents commonly used in battery electrolytes with something much safer and inexpensive, as well as abundant: seawater.

Findings were published in Nature Communications.

“The world’s energy needs are increasing, but the development of next-generation electrochemical energy storage systems with high energy density and long cycling life remains technically challenging,” said Zhenxing Feng, a chemical engineering researcher at

Read More

Oregon State researchers take key step toward cleaner, more sustainable production of hydrogen

Efficiently mass-producing hydrogen from water is closer to becoming a reality thanks to Oregon State University College of Engineering researchers and collaborators at Cornell University and the Argonne National Laboratory.

The scientists used advanced experimental tools to forge a clearer understanding of an electrochemical catalytic process that’s cleaner and more sustainable than deriving hydrogen from natural gas.

Findings were published in Science Advances.

Hydrogen is found in a wide range of compounds on Earth, most commonly combining with oxygen to make water, and it has many scientific, industrial and energy-related roles. It also occurs in the form of hydrocarbons, compounds

Read More

Fast transport in carbon nanotube membranes could advance human health

Lawrence Livermore National Laboratory (LLNL) researchers have discovered that carbon nanotube membrane pores could enable ultra-rapid dialysis processes that would greatly reduce treatment time for hemodialysis patients.

The ability to separate molecular constituents in complex solutions is crucial to many biological and man-made processes. One way is via the application of a concentration gradient across a porous membrane. This drives ions or molecules smaller than the pore diameters from one side of the membrane to the other while blocking anything that is too large to fit through the pores.

Artistic rendering of fast ion permeation inside single-walled carbon nanotubes. Small

Read More